1,1-Insertion of substituted alkynes into the $\mathrm{Ir}-\mathrm{O}$ bond of η^{2}-carboxylato iridium complexes

Chong Shik Chin *, Hyungeui Lee *, Myung Ki Lee, Soyoung Noh, Min-Sik Eum, Seunggweon Hong

Chemistry Department, Sogang University, 1 Shinsoo-dong, Mapo-gu, Seoul 121-742, Republic of Korea

Received 12 October 2004; accepted 25 November 2004

Abstract

Alkyl-carbonyl-iridium $\left[\mathrm{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CR}^{\prime}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\left(\mathbf{1}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{Ph}, p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$ react with alkynes $(\mathrm{RC} \equiv \mathrm{CH} ; \mathrm{R}=\mathrm{Ph}$, $\left.p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$ in the presence of NEt_{3} to give acyl-alkynyl-iridium $\operatorname{Ir}\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right)(-\mathrm{C} \equiv \mathrm{CR})\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CR}^{\prime}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (4) which further react with $\mathrm{RC} \equiv \mathrm{CH}$ to give alkyl-carbonyl-cis-bis(alkynyl) iridium $\operatorname{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\mathrm{C} \equiv \mathrm{CR}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{5})\right.$. cis-Bis(alkenyl)iridium complexes, $\operatorname{Ir}\left(-\mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(6)$ and $\operatorname{Ir}(-\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH})\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(7)$ react with substituted alkynes $\mathrm{RC} \equiv \mathrm{CH}\left(\mathrm{R}=\mathrm{Ph}, p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right.$, cyclohex-1-enyl) to give cis-bis(alkynyl) $\mathrm{Ir}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(9)$ that further react with $\mathrm{RC} \equiv \mathrm{CH}$ to undergo the alkyne insertion reaction into the Ir-O bond to produce iridacycles containing vinyl acetate ligands, $\operatorname{Ir}\left(\mathrm{C}(=\mathrm{CHR}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right)(-\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{8})$. © 2004 Elsevier B.V. All rights reserved.

Keywords: 1,1-Insertion; Iridium; Alkynes; Vinylidenes; M-C-O bond formation

1. Introduction

Reactions of transition metals with alkynes have been extensively investigated as they produce not only a variety of interesting organic compounds [1] but also metal-hydrocarbyls [2], such as metal-alkenyls, -alkynyls, -carbenes, and -vinylidenes which are reactive precursors as well as intermediates of various reactions. During our studies on reactions of iridium compounds with alkynes, we have isolated a variety of iridium hydrocarbyls that undergo various types of $\mathrm{C}-\mathrm{C}$ bond forming reactions to produce interesting conjugated organic compounds [3]. We also found some interesting types of reactions such as 1,1 -insertion of $\mathrm{HC} \equiv \mathrm{CH}$ into the $\mathrm{Ir}-\mathrm{O}$ bond of an acetato-iridium complex

[^0](1a) to form new $\operatorname{Ir}-\mathrm{C}\left(=\mathrm{CH}_{2}\right)$-O- moiety (2) and alkyl migration to carbonyl ligand followed by formation of $\mathrm{Ir}=\mathrm{C}(\mathrm{OR}) \mathrm{CH}_{3}$ groups from reactions with $\mathrm{HC} \equiv \mathrm{CH}$ and alcohols to produce acyl-alkoxycarbene complexes (3) (Eq. (1)) [4]. Reactions of $\mathbf{1}$ with substituted alkynes $(\mathrm{RC} \equiv \mathrm{CH})$, however, give somewhat different types of metal complexes with different types of hydrocarbyl ligands (see below).

We now wish to report new acyl-alkynyl-iridium from reactions of alkyl-carbonyl-iridium (1) with $\mathrm{RC} \equiv \mathrm{CH}$ and $c i s$-bis(alkynyl)-iridacycles containing vinyl acetate $\left(-\mathrm{C}(=\mathrm{CHR})-\mathrm{OC}\left(\mathrm{CH}_{3}\right) \mathrm{O}-\right.$) ligand via 1,1insertion of $\mathrm{RC} \equiv \mathrm{CH}$ into $\mathrm{Ir}-\mathrm{O}$ bond of η^{2}-carboxylato iridium complexes.

2. Results and discussion

Unlike those reactions of $\mathrm{HC} \equiv \mathrm{CH}$ in Eq. (1), reactions of 1 with substituted alkynes $(\mathrm{RC} \equiv \mathrm{CH}: \mathrm{R}=\mathrm{Ph}$, $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$) give neither the insertion products (analogue of 2) nor the carbene complexes (analogue of 3) but a mixture of uncharacterized complexes. In the presence of NEt_{3}, however, acyl-alkynyl-iridium complexes (4) are obtained in high yields from reactions of 1 with $\mathrm{RC} \equiv \mathrm{CH}$ (Eq. (2)). Formation of acyl-alkynyl iridium complexes $\mathbf{4}$ may be understood by the similar reaction pathway suggested for the formation of acyl-alkoxycarbene iridium complexes 3 [4] obtained from the reactions of $\mathbf{1 a}$ with $\mathrm{HC} \equiv \mathrm{CH}$ in the presence of $\mathrm{ROH}\left(\mathrm{R}=\mathrm{CH}_{3}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$) (Eq. (1)).

Insertion of $\mathrm{RC} \equiv \mathrm{CH}$ into the $\mathrm{Ir}-\mathrm{O}$ bond of 1 has never been detected while the methyl group migration to the CO ligand $(\mathbf{1} \rightarrow \mathbf{4})$ seems to readily occur as seen from reactions of $\mathbf{1}$ with $\mathrm{HC} \equiv \mathrm{CH}$ in the presence of alcohol ($\mathbf{1 a} \rightarrow \mathbf{3}$ in Eq. (1)). The crystal structure of complex 4 (Fig. 1) shows Ir-O2 ($2.526 \AA$) being much longer than $\operatorname{Ir}-\mathrm{O} 1(2.142 \AA)$ distance implying the lability of the $\mathrm{Ir}-\mathrm{O} 2$ (trans to the acyl ligand) bond in 4. Complexes 4 further react with another $\mathrm{RC} \equiv \mathrm{CH}$ to give up the η^{2} carboxylato ligands and take two alkynyl groups instead to give cis-bis(alkynyl) complexes 5 [5] (Eq. (2)).

Both the CH_{3} ligand migration to the CO ligand $(\mathbf{1} \rightarrow \mathbf{4})$ and the retro-migration of the CH_{3} group of the acyl ligand to the metal $(\mathbf{4} \rightarrow \mathbf{5})$ are possible probably due to the facile rearrangement of the carboxylato ligands from η^{2} - to η^{1}-bonding mode to provide an extra coordination site for incoming alkyne. Accordingly, η^{1}-carboxylato complexes \mathbf{A} and \mathbf{B} are suggested as the intermediates for the formation of $\mathbf{4}$ and 5, respectively (Eq. (3)).

B
$\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{Ph}, \mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{CH}_{3}, \mathrm{Ph}, p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$

Fig. 1. ORTEP drawing of $\operatorname{Ir}\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)\left(\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$ $\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(4 f)$ with 50% thermal ellipsoids probability. Selected bond distances (\AA): $\operatorname{Ir}-\mathrm{P}_{1}=2.3410(8) ; \operatorname{Ir}-\mathrm{P}_{2}=2.3428(8) ; \mathrm{Ir}-$ $\mathrm{C}_{1}=1.977(3), \quad \operatorname{Ir}-\mathrm{C}_{54}=1.996(3), \quad \operatorname{Ir}-\mathrm{O}_{1}=2.124(2) ; \quad \mathrm{Ir}-\mathrm{O}_{2}=2.526$, $\mathrm{O}_{1}-\mathrm{C}_{10}=1.273(4), \quad \mathrm{O}_{2}-\mathrm{C}_{10}=1.266(4), \quad \mathrm{O}_{3}-\mathrm{C}_{54}=1.204(4), \quad \mathrm{C}_{1}-$ $\mathrm{C}_{2}=1.213(5), \mathrm{C}_{2}-\mathrm{C}_{3}=1.441(5), \mathrm{C}_{10}-\mathrm{C}_{11}=1.488(5)$. Selected bond angles $\quad\left(^{\circ}\right): \quad \mathrm{C}_{1}-\mathrm{Ir}-\mathrm{C}_{54}=94.77(14) ; \quad \mathrm{C}_{54}-\mathrm{Ir}-\mathrm{O}_{1}=94.32(12), \quad \mathrm{C}_{1}-$ $\operatorname{Ir}-\mathrm{P}_{1}=89.47(9), \quad \mathrm{C}_{54}-\mathrm{Ir}-\mathrm{P}_{1}=93.13(10), \quad \mathrm{O}_{1}-\mathrm{Ir}-\mathrm{P}_{1}=90.64(6)$, $\mathrm{O}_{2}-\mathrm{Ir}-\mathrm{P}_{1}=88.20(6), \quad \mathrm{C}_{1}-\mathrm{Ir}-\mathrm{P}_{1}=86.18(9), \quad \mathrm{C}_{54}-\mathrm{Ir}-\mathrm{P}_{2}=92.04(10)$, $\mathrm{O}_{1}-\mathrm{Ir}-\mathrm{P}_{2}=92.89(6), \quad \mathrm{O}_{2}-\mathrm{Ir}-\mathrm{P}_{2}=89.31(6), \quad \mathrm{C}_{10}-\mathrm{O}_{1}-\mathrm{Ir}=101.65(19)$, $\mathrm{C}_{10}-\mathrm{O}_{2}-\mathrm{Ir}=115.38(19), \mathrm{O}_{2}-\mathrm{C}_{10}-\mathrm{O}_{1}=119.6(3)$.

It may be mentioned that the CH_{3} ligand migration to the CO ligand has never been observed for related complexes, $\left[\left(\mathrm{OH}_{2}\right)(\mathrm{OA}) \operatorname{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$containing the two labile O-ligands $\left(\mathrm{OH}_{2}\right.$ and $\mathrm{OA}\left(\mathrm{OClO}_{3}^{-}\right.$, $\left.\mathrm{OTf}^{-}\right)$) that are cis to each other and trans to CH_{3} and CO, respectively [6].

In order to see the insertion of substituted alkynes into the $\operatorname{Ir}-\mathrm{O}$ bond, another types of η^{2}-acetato iridium complexes 6 and 7 have been investigated. Both complexes 6 and 7 have two Ir-C σ-bonds cis to each other and trans to the $\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}$ ligand as do the complexes 1 that readily undergo the insertion reaction of the unsubstituted alkyne $(\mathrm{HC} \equiv \mathrm{CH})$ into the $\mathrm{Ir}-\mathrm{O}$ bond (Eq. (1)). Complexes 6 and 7 readily undergo the 1,1-insertion reaction of substituted alkynes $(\mathrm{RC} \equiv \mathrm{CH})$ into the $\mathrm{Ir}-\mathrm{O}$ bond to produce iridacycles (8) containing η^{2}-vinyl acetate $\left(-\mathrm{C}(=\mathrm{CHR})-\mathrm{OC}-\left(\mathrm{CH}_{3}\right) \mathrm{O}-\right)$ ligands (Eq. (4)). Such 1,1-insertion of substituted terminal alkynes $\left(\mathrm{HC} \equiv \mathrm{CPh}, \mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{Me}\right)$ into the $\mathrm{M}-\mathrm{O}$ bond between the metal and η^{2}-carboxylato ligands has been previously reported for ruthenium [7] and osmium [7b] complexes to produce new $\mathrm{M}-\mathrm{C}(=\mathrm{CHR})-$ $\mathrm{O}-$ units.

$\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{Ph}(\mathbf{a}), p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}(\mathbf{b})$

Reactions of 6 and 7 with two equivalent alkynes ($\mathrm{RC} \equiv \mathrm{CH}$), respectively give the same cis-bis(alkynyl)-η^{2}-acetato complexes $\left(\operatorname{Ir}(-\mathrm{C} \equiv \mathrm{CR})_{2}\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CR}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right.$, 9 in Eq. (5)) in high yields while no compound containing η^{2}-vinyl acetate ligands $\left(-\mathrm{C}(=\mathrm{CHR}) \mathrm{OC}\left(\mathrm{CH}_{3}\right) \mathrm{O}-\right)$ has been observed from reactions of complexes $\mathbf{6}$ and 7 with one equivalent $\mathrm{RC} \equiv \mathrm{CH}$.

It is interesting to notice that the η^{2}-carboxylato ligands of $\mathbf{1}$ are replaced by the two alkynyl groups leaving the two $\mathrm{Ir}-\mathrm{C}$ bonds ($\boldsymbol{I r}-\mathrm{CH}_{3}$ and $\boldsymbol{I r}-\mathbf{C O}$) intact (Eq. (2)) while the η^{2}-carboxylato ligands of $\mathbf{6}$ and 7 remain intact in the reactions with $\mathrm{RC} \equiv \mathrm{CH}$ with the $\mathrm{Ir}-\mathrm{C}$ bonds (two $\boldsymbol{I r}-\mathrm{CH}=\mathrm{CH}_{2}$ or $\boldsymbol{I r}-\mathbf{C H}=\mathrm{CHCH}=\mathbf{C H}$) being replaced by two other Ir-C bonds (Ir-C $\equiv \mathbf{C R}$) (Eq. (3)).

It has been also confirmed that complexes 9 further react with $\mathrm{RC} \equiv \mathrm{CH}$ to give complexes 8 . It is most likely that the 1,1 -insertion of $\mathrm{RC} \equiv \mathrm{CH}$ into the $\mathrm{Ir}-\mathrm{O}$ bond (Eq. (4)) occurs via the intramolecular $\mathrm{C}-\mathrm{O}$ bond forming reaction between the oxygen atom of the acetato ligand and the α-carbon of the vinylidene ligand of the intermediate \mathbf{C} as shown in Eq. (5). The two alkynyl ligands cis to each other in complexes 9 may allow the insertion of substituted alkynes ($\mathrm{RC} \equiv \mathrm{CH}$) into the IrO bond as they occupy smaller space in the immediate surroundings of the metal than do the two cis ligands, CH_{3} and CO , of $\mathbf{1}$. It may also be said that the two ethenyl groups of $\mathbf{6}$ and 1,3-butadien-1,4-diyl ligand of $\mathbf{7}$ are less favorable than the cis-bis(alkynyl) ligands in 9 for the insertion of substituted alkynes into the $\operatorname{Ir}-\mathrm{O}$ bond due to steric reasons.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{L}=\mathrm{PPH}_{3} \\
\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}(\mathbf{a}) ; \mathrm{R}=\mathrm{R}^{\prime}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}(\mathbf{b}) ; \mathrm{R}=p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{H}(\mathbf{c})
\end{array}
\end{aligned}
$$

New iridium complexes $(\mathbf{4}, \mathbf{6}-9)$ are unambiguously identified by detailed spectral and elemental analysis data and crystal structure determination by X-ray diffraction data analysis for $\mathbf{4 f}$ (see Section 3 and Supporting Information). Most assignments of spectral signals measured for $\mathbf{4}$ and 6-9 are unambiguously straightforward by comparing numerous data for related compounds previously reported [3,4,7-9].

In summary, we have observed (i) alkyl group migration to CO ligand to give cis-alkynyl-acyl-iridium complexes (4) from the reactions of cis-alkyl-carbonyliridium complexes with substituted alkynes, (ii) retromigration of CH_{3} group of the acyl ligands from further reactions of $\mathbf{4}$ with alkynes to produce alkyl-carbonyl-cis-bis(alkynyl) complexes (5) and (iii) 1,1-insertion of substituted alkynes into the Ir-O bond in η^{2}-acetatobis(alkynyl) iridium complexes (9) to produce cisbis(alkynyl)iridacycles (8) containing vinyl acetate ligands.

3. Experimental

3.1. General information

A standard vacuum system and Schlenk type glassware were used in most of the experiments in handling metal complexes although most of the compounds are stable enough to be handled in air.

NMR spectra were recorded on a Varian 300 or 500 MHz spectrometer for ${ }^{1} \mathrm{H}, 75.4$ or 126 MHz for ${ }^{13} \mathrm{C}$ and 81 MHz for ${ }^{31} \mathrm{P}$. Infrared spectra were obtained on a Nicolet 205. Elemental analyses were carried out with a Carlo Erba EA1108 at the Organic Chemistry Research Center, Sogang University.

3.2. Synthesis and reactions

$\left[\mathrm{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CR}^{\prime}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ OTf (1) were prepared by the literature method [4].
3.2.1. Synthesis of $\operatorname{Ir}(\mathrm{C} \equiv \mathrm{CR})\left(\mathrm{COCH}_{3}\right)\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CR}^{\prime}\right)$ $\left(P h_{3}\right)_{2}\left(4, R=P h, R^{\prime}=C H_{3}(\boldsymbol{a}), R=p-C_{6} H_{4} C H_{3}\right.$, $R^{\prime}=\mathrm{CH}_{3}(\boldsymbol{b}), R=R^{\prime}=P h(c), R=p-C_{6} H_{4} \mathrm{CH}_{3}$, $R^{\prime}=P h(\boldsymbol{d}), R=P h, R^{\prime}=p-C_{6} H_{4} C H_{3}(\boldsymbol{e}), R=R^{\prime}=$ $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}(\boldsymbol{f})$)

These complexes were prepared in the same manner as described below for $\mathbf{4 a}$. The reaction mixture of $\mathbf{1 a}$ $(0.11 \mathrm{~g}, 0.14 \mathrm{mmol})$ and $\mathrm{PhC} \equiv \mathrm{CH}(0.017 \mathrm{~mL}, 0.14$ $\mathrm{mmol})$ in the presence of $\mathrm{NEt}_{3}(0.020 \mathrm{~mL}, 0.14 \mathrm{mmol})$ was stirred at room temperature for 10 min . Addition of methanol (20 mL) to the CHCl_{3} solution resulted in yellow microcrystals of $\mathbf{4 a}$ which were collected by filtration, washed with methanol $(3 \times 20 \mathrm{~mL})$, and dried under vacuum. The yield was 0.088 g and 98% based on of $\operatorname{Ir}\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right)\left(-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (4a).
$\operatorname{Ir}\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right)\left(-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{4 a})$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.02(\mathrm{t}$, metha-protons of $\left.\mathrm{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}, J(\mathrm{H}-\mathrm{H})=7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.94(\mathrm{t}$, paraproton of $\left.\operatorname{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} H_{5}, J(\mathrm{H}-\mathrm{H})=7 \mathrm{~Hz}, 1 \mathrm{H}\right)$ and 6.54 (d, Ir-C $\equiv \mathrm{CC}_{6} H_{5}$, ortho-protons, $J(\mathrm{HH})=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.50\left(\mathrm{~s}, \operatorname{Ir}-\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}, 3 \mathrm{H}\right), 0.56\left(\mathrm{~s}, \operatorname{Ir}-\eta^{2}-\right.$ $\mathrm{O}_{2} \mathrm{CCH}_{3}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.6$ $\left.(\mathrm{t}, \mathrm{Ir}-\mathrm{C}=\mathrm{O}) \mathrm{CH}_{3}, \quad J(\mathrm{CP})=4 \mathrm{~Hz}\right), 182.9\left(\mathrm{~s}, \quad \operatorname{Ir}-\eta^{2}-\right.$ $\mathrm{O}_{2} \mathrm{CCH}_{3}$), 131.0, 127.5 and 124.3 (both s, CH carbons of $\mathrm{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$), $106.6\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)$, $76.0(\mathrm{t}, \mathrm{Ir}-$ $\left.C \equiv \mathrm{CC}_{6} \mathrm{H}_{5}, J(\mathrm{CP})=13 \mathrm{~Hz}\right), 36.7\left(\mathrm{~s}, \operatorname{Ir}-\mathrm{C}(=\mathrm{O}) C \mathrm{H}_{3}\right)$, $22.4 \quad\left(\mathrm{~s}, \quad \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)$. HETCOR $\quad\left({ }^{1} \mathrm{H} \quad(500\right.$ $\left.\mathrm{MHz}) \rightarrow{ }^{13} \mathrm{C}(126 \mathrm{MHz})\right): \delta 1.50 \rightarrow 36.7 ; 0.56 \rightarrow 22.4$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(81 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.3\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{PPh}_{3}\right)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2113\left(\mathrm{~s}, v_{\mathrm{C}=\mathrm{C}}\right), 1634\left(\mathrm{~s}, v_{\mathrm{C}=\mathrm{O}}\right)$. Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{3} \mathrm{C}_{48} \mathrm{H}_{41}$: C, 62.66 ; H, 4.49. Found: C, 62.63; H, 4.48.
$\operatorname{Ir}\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right)\left(-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (4b). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.45-6.85$ (AB quartet with $\left.\Delta v / J=23.2, \mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, 4 \mathrm{H}\right), 2.24$
(s, $\left.\operatorname{Ir}-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} H_{3}, 3 \mathrm{H}\right), 1.49\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right.$, $3 \mathrm{H}), 0.56\left(\mathrm{~s}, \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 192.0\left(\mathrm{t}, \operatorname{Ir}-C(=\mathrm{O}) \mathrm{CH}_{3}\right), 182.6\left(\mathrm{~s}, \mathrm{Ir}-\eta^{2}-\right.$ $\mathrm{O}_{2} \mathrm{CCH}_{3}$), 130.6 and 128.1 (both s, CH carbons of $\mathrm{Ir}-$ $\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 106.2 ($\mathrm{s}, \mathrm{Ir}-\mathrm{C} \equiv C-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 73.9 $\left(\mathrm{t}, \mathrm{Ir}-C \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, J(\mathrm{CP})=14 \mathrm{~Hz}\right), 36.5(\mathrm{~s}, \mathrm{Ir}-$ COCH_{3}), $22.2\left(\mathrm{~s}, \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right.$), $21.1(\mathrm{~s}, \mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$. HETCOR $\left({ }^{1} \mathrm{H} \quad(500 \mathrm{MHz}) \rightarrow{ }^{13} \mathrm{C} \quad(126\right.$ $\mathrm{MHz})$): $\quad \delta \quad 2.24 \rightarrow 21.1 ; \quad 1.49 \rightarrow 36.5 ; \quad 0.56 \rightarrow 22.2$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($81 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.3\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{PPh}_{3}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2114\left(\mathrm{~s}, v_{\mathrm{C}} \equiv \mathrm{C}\right), 1634\left(\mathrm{~s}, v_{\mathrm{C}=\mathrm{O}}\right)$. Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{3} \mathrm{C}_{49} \mathrm{H}_{43}$: C, 63.01; H, 4.64. Found: C, 63.00; $\mathrm{H}, 4.62$.
$\operatorname{Ir}\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right)\left(-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{4 c})$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.08-6.61 (m, $\mathrm{Ir}-\eta^{2}-$ $\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}$ and $\left.\mathrm{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}, 10 \mathrm{H}\right), 1.42$ (s, $\operatorname{Ir}-$ $\left.\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 193.4 $\left(\mathrm{t}, \quad \operatorname{Ir}-C(=\mathrm{O}) \mathrm{CH}_{3}, \quad J(\mathrm{CP})=5 \mathrm{~Hz}\right), \quad 177.8 \quad\left(\mathrm{~s}, \quad \mathrm{Ir}-\eta^{2}-\right.$ $\mathrm{O}_{2} \mathrm{CCH}_{3}$), 106.2 (s, $\quad \mathrm{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$), 75.6 (t, $\mathrm{Ir}-$ $\left.C \equiv \mathrm{CC}_{6} \mathrm{H}_{5}, \quad J(\mathrm{CP})=14 \mathrm{~Hz}\right), 36.9\left(\mathrm{~s}, \operatorname{Ir}-\mathrm{C}(=\mathrm{O}) C \mathrm{H}_{3}\right)$. HETCOR $\left({ }^{1} \mathrm{H} \quad(500 \mathrm{MHz}) \rightarrow{ }^{13} \mathrm{C} \quad(126 \mathrm{MHz})\right): \delta$ $1.42 \rightarrow 36.9 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(81 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.4$ ($\mathrm{s}, \mathrm{Ir}-\mathrm{PPh}_{3}$). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2113\left(\mathrm{~s}, v_{\mathrm{C}}^{\mathrm{C}} \mathrm{C}\right), 1636(\mathrm{~s}$, $v_{\mathrm{C}=\mathrm{O}}$). Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{3} \mathrm{C}_{53} \mathrm{H}_{43}: \mathrm{C}, 64.82 ; \mathrm{H}$, 4.41. Found: $\mathrm{C}, 64.79$; $\mathrm{H}, 4.40$.
$\operatorname{Ir}\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right)\left(-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}\right)-$ $\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{4 d}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.10(\mathrm{t}$, para-proton of $\mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CC}_{6} H_{5}$, para, $J(\mathrm{HH})=7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06$ (d, ortho-protons of $\mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}$, $J(\mathrm{HH})=7.5 \mathrm{~Hz}, 2 \mathrm{H})$ and $6.93(\mathrm{t}$, metha-protons of Ir-$\left.\eta^{2}-\mathrm{O}_{2} \mathrm{CC}_{6} H_{5}, J(\mathrm{HH})=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.56-6.86(\mathrm{AB}$ quartet with $\left.\quad v / J=19.6, \quad \mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, 4 \mathrm{H}\right)$, 2.27 (s, $\left.\quad \mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, \quad 3 \mathrm{H}\right), \quad 1.43 \quad(\mathrm{~s}, \quad \mathrm{Ir}-$ $\left.\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 193.3 ($\left.\mathrm{t}, \operatorname{Ir}-\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right), 177.6\left(\mathrm{~s}, \operatorname{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}\right)$, 130.7 and 128.1 (s, CH carbons of $\mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p$ $C_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 130.3, 128.1 and 126.2 (s, CH carbons of $\operatorname{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$), $105.7\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{C} \equiv C-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 73.4$ ($\mathrm{t}, \mathrm{Ir}-C \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 36.7 (s, $\mathrm{Ir}-\mathrm{COCH} \mathrm{H}_{3}$), 21.1 (s, $\left.\quad \mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$. HETCOR $\quad\left({ }^{1} \mathrm{H} \quad(500\right.$ $\left.\mathrm{MHz}) \rightarrow{ }^{13} \mathrm{C}(126 \mathrm{MHz})\right): \delta 2.27 \rightarrow 21.1 ; 1.43 \rightarrow 36.7$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($81 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.5\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{PPh}_{3}\right)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2112\left(\mathrm{~s}, v_{\mathrm{C} \equiv \mathrm{C}}\right), 1637\left(\mathrm{~s}, v_{\mathrm{C}=\mathrm{O}}\right)$. Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{3} \mathrm{C}_{54} \mathrm{H}_{45}$: C, 65.11; H, 4.55. Found: C, 65.20; H, 4.49.
$\operatorname{Ir}\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right)\left(-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)\left(\eta^{2}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)-$ $\left(\mathrm{PPh}_{3}\right)_{2}(4 \mathrm{e}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.07(\mathrm{t}$, metha-protons of $\left.\mathrm{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}, J(\mathrm{HH})=7 \mathrm{~Hz}, 2 \mathrm{H}\right)$ and 6.98 (d, ortho-proton of $\operatorname{Ir}-\mathrm{CCC}_{6} H_{5}, J(\mathrm{HH})=7.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 6.64-6.74 (AB quartet with $\Delta v / J=4.3, \mathrm{Ir}-\eta^{2}-$ $\left.\mathrm{O}_{2} \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, 4 \mathrm{H}\right), 2.20\left(\eta^{2}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 1.45$ (s, $\left.\operatorname{Ir}-\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 193.4\left(\mathrm{t}, \mathrm{Ir}-\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}, J(\mathrm{CP})=5 \mathrm{~Hz}\right), 177.8(\mathrm{~s}, \mathrm{Ir}-$ $\left.\eta^{2}-\mathrm{O}_{2} C-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 106.2\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right), 75.6(\mathrm{t}$, $\left.\operatorname{Ir}-C \equiv \mathrm{CC}_{6} \mathrm{H}_{5}, J(\mathrm{CP})=14 \mathrm{~Hz}\right), 36.9\left(\mathrm{~s}, \operatorname{Ir}-\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right)$, 21.5 (s, $\left.\eta^{2}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$. HETCOR (${ }^{1} \mathrm{H} \quad(500$
$\left.\mathrm{MHz}) \rightarrow{ }^{13} \mathrm{C}(126 \mathrm{MHz})\right): \delta 2.20 \rightarrow 21.5 ; 1.45 \rightarrow 36.9$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($81 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.4\left(\mathrm{~s}, \mathrm{Ir}-P \mathrm{Ph}_{3}\right)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2111\left(\mathrm{~s}, v_{\mathrm{C} \equiv \mathrm{C}}\right), 1637\left(\mathrm{~s}, v_{\mathrm{C}=\mathrm{O}}\right)$. Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{3} \mathrm{C}_{54} \mathrm{H}_{45}$: C, 65.11; H, 4.55. Found: C, 65.11 ; H, 4.46.
$\operatorname{Ir}\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right)\left(-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)\left(\eta^{2}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4}-\right.$ $\left.\mathrm{CH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{4 f}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.97-$ $6.55\left(\mathrm{~m}, \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right.$ and $\mathrm{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$, 8 H), $2.29\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, 3 \mathrm{H}\right), 2.22\left(\eta^{2}-\mathrm{O}_{2} \mathrm{C}-p-\right.$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 1.43 (s, $\left.\operatorname{Ir}-\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \delta 194.0 \quad\left(\mathrm{t}, \quad \operatorname{Ir}-\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right.$, $J(\mathrm{CP})=5 \quad \mathrm{~Hz}), \quad 178.0 \quad\left(\mathrm{~s}, \quad \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} C-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, 130.7, 130.3, 128.1, 126.2 (s, CH carbons of $\mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-$ $p-C_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ and $\mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), $105.8(\mathrm{~s}, \mathrm{Ir}-$ $\left.\mathrm{C} \equiv C-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), \quad 73.9 \quad\left(\mathrm{t}, \quad \mathrm{Ir}-C \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right.$, $J(\mathrm{CP})=13 \mathrm{~Hz}), 37.0\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right), 21.5\left(\eta^{2}-\mathrm{O}_{2} \mathrm{C}-\right.$ $\left.p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 21.3\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$. HETCOR $\left({ }^{1} \mathrm{H} \quad(500 \mathrm{MHz}) \rightarrow{ }^{13} \mathrm{C} \quad(126 \mathrm{MHz})\right): \delta \quad 2.29 \rightarrow 21.3$; $2.22 \rightarrow 21.5 ; \quad 1.43 \rightarrow 37.0 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(81 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.4\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{PPh}_{3}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2112(\mathrm{~s}$, $\left.v_{\mathrm{C}} \equiv \mathrm{C}\right), 1637\left(\mathrm{~s}, v_{\mathrm{C}=\mathrm{O}}\right)$. Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{3} \mathrm{C}_{55} \mathrm{H}_{47}$: C, 65.40; H, 4.69. Found: C, 65.36; H, 4.66.

3.2.2. Synthesis of $\operatorname{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})(-\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (5, $\mathrm{R}=\mathrm{Ph}(\boldsymbol{a}), p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ (b))

These complexes were prepared in the same manner as described below for $\mathbf{5 b}$. The reaction mixture of $\mathbf{4 b}$ $(0.11 \mathrm{~g}, 0.14 \mathrm{mmol})$ and p-tolyl-C $\equiv \mathrm{CH}(0.015 \mathrm{~g}, 0.15$ mmol) was stirred at room temperature for 30 min . Acetic acid was removed with water by extraction $(2 \times 10$ $\mathrm{mL})$ and addition of methanol $(20 \mathrm{~mL})$ to the CHCl_{3} solution resulted in yellow microcrystals of $\mathbf{5 b}$ which were collected by filtration, washed with methanol $(3 \times 20 \mathrm{~mL})$, and dried under vacuum. The yield was 0.11 g and 98% based on of $\operatorname{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})(\mathrm{C} \equiv \mathrm{C}-p-$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{5 b})$ [3c] which was identified by ${ }^{1} \mathrm{H}$ NMR and IR spectral measurement.

3.2.3. Preparation of $\operatorname{Ir}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)$ $\left(\mathrm{PPh}_{3}\right)_{2}$ (6)

A $0.1 \mathrm{~g}(0.1 \mathrm{mmol})$ of $\left[\operatorname{Ir}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\left(\mathrm{NCCH}_{3}\right)_{2}-\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$]OTf [3d] in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was stirred in the presence of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}(0.15 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$ for 3 h before $\mathrm{MeOH}(30 \mathrm{~mL})$ was added to precipitate beige mi-cro-crystals which were collected by filtration, washed with n-pentane $(3 \times 10 \mathrm{~mL})$ and dried under vacuum. The yield was 0.08 g and 98% based on $\operatorname{Ir}\left(\mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2} \quad$ (6). $\quad{ }^{1} \mathrm{H} \quad \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.36-7.50\left(\mathrm{~m}, \mathrm{P}\left(\mathrm{C}_{6} H_{5}\right)_{3}, 30 \mathrm{H}\right)$, $7.22\left(\mathrm{~m}, \mathrm{Ir}-\mathrm{CH}=\mathrm{CH}_{2}, 2 \mathrm{H}\right), 4.94\left(\mathrm{~d}, \mathrm{Ir}-\mathrm{CH}=\mathrm{CH}_{\text {trans }} H_{\text {cis }}\right.$, $J(\mathrm{HH})=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.88\left(\mathrm{~d}, \mathrm{Ir}-\mathrm{CH}=\mathrm{C}_{\text {trans }} \mathrm{H}_{\text {cis }}\right.$, $J(\mathrm{HH})=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.91\left(\mathrm{~s}, \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}, 3 \mathrm{H}\right)$. ${ }^{13} \mathrm{C} \quad$ NMR $\left(\mathrm{CDCl}_{3}, 75.4 \mathrm{MHz}\right): \delta 183.2\left(\mathrm{~s}, \mathrm{Ir}-\eta^{2}-\right.$ $\mathrm{O}_{2} \mathrm{CCH}_{3}$), $124.7\left(\mathrm{t}, J(\mathrm{CP})=9.5 \mathrm{~Hz}, \mathrm{Ir}-\mathrm{CH}=\mathrm{CH}_{2}\right)$, 116.0 (br s, $\operatorname{Ir}-\mathrm{CH}=\mathrm{CH}_{2}$), $24.0\left(\mathrm{~s}, \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)$, 135.0, 130.2, 130.0 and $127.9 \quad\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$

NMR ($\left.\mathrm{CDCl}_{3}, 81 \mathrm{MHz}\right): \delta 8.37\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$. IR (KBr , $\left.\mathrm{cm}^{-1}\right): 1553\left(\mathrm{~m}, v_{\mathrm{C}=0}\right), 1529\left(\mathrm{~m}, v_{\mathrm{C}=\mathrm{C}}\right)$. Anal. Cald for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{2} \mathrm{C}_{42} \mathrm{H}_{39}$: C, 60.78 ; H, 4.74. Found: C, 60.76 ; H, 4.71 .

3.2.4. Preparation of $\operatorname{Ir}(\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH})\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)$ $\left(P P h_{3}\right)_{2}$ (7)

To a solution of $\left[\operatorname{Ir}(\overline{\mathrm{CH}=\mathrm{CHCH}=\mathrm{C}} \mathrm{H})\left(\mathrm{NCCH}_{3}\right)\right.$ $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$]OTF [9] $(0.1 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10$ mL) were $\mathrm{Me}_{3} \mathrm{NO}(0.019 \mathrm{~g}, 0.25 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}$ $(0.012 \mathrm{~g}, 0.3 \mathrm{mmol})$ added and the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ under N_{2} for 30 min before the pale yellow solution turned light brown. Excess $\mathrm{Me}_{3} \mathrm{NO}$ and NMe_{3} were removed by extraction with $\mathrm{H}_{2} \mathrm{O}(2 \times 10$ mL). A light brown solution of CHCl_{3} was stirred in the presence of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}(0.15 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$ for 3 h before $\mathrm{MeOH}(30 \mathrm{~mL})$ was added to precipitate beige micro-crystals which were collected by filtration, washed with n-pentane $(3 \times 10 \mathrm{~mL})$ and dried under vacuum. The yield was 0.097 g and 98% based on $\operatorname{Ir}(\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH})\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (7). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.3-7.5\left(\mathrm{~m}, \mathrm{P}\left(\mathrm{C}_{6} H_{5}\right)_{3}, 30 \mathrm{H}\right), 6.86$ (m, Ir- $\mathrm{CH}=\mathrm{CHCH}=\mathrm{C} H, 2 \mathrm{H}$), $5.63(\mathrm{~m}, \mathrm{Ir}-\mathrm{CH}=\mathrm{C} H \mathrm{C} H=\mathrm{C} H$, $2 \mathrm{H}), 0.48\left(\mathrm{~s}, \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2}-\mathrm{CCH} H_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}): \delta 183.5\left(\mathrm{~s}, \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)$, $143.6(\mathrm{~s}$, Ir- $\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH}), \quad 132.9 \quad(\mathrm{t}, \quad J(\mathrm{C}-\mathrm{P})=8.0 \quad \mathrm{~Hz}$, Ir- $\mathrm{CH}=\mathrm{CHCH}=\mathrm{CH} \mathrm{H}$), 24.1 ($\left.\mathrm{s}, \operatorname{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right), 135.05$, 129.81, 129.79 and $\left.127.48\left(\mathrm{P}^{(} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)$. HETCOR $\left({ }^{1} \mathrm{H}\right.$ $\left.(500 \mathrm{MHz}) \rightarrow{ }^{13} \mathrm{C} \quad(126 \quad \mathrm{MHz})\right): \quad \delta \quad 0.48 \rightarrow 24.1$; $5.63 \rightarrow 143.6 ; 6.86 \rightarrow 132.9 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 81\right.$ MHz): $\delta 13.36\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$. Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{2} \mathrm{C}_{42} \mathrm{H}_{37}$: C, 60.93 ; H, 4.50. Found: C, 60.90 ; H, 4.49.

3.2.5. Reactions of complexes 6 and 7 with excess

 $R C \equiv C H$: formation of $\operatorname{Ir}\left(-\mathrm{C}(=\mathrm{CHR}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=O\right)$ -$(-C \equiv C R)_{2}\left(P P h_{3}\right)_{2}(\boldsymbol{8})$Compounds $\mathbf{8}$ were prepared by the same method as described below for $\mathbf{8 a}$. $\mathrm{A} \mathrm{CHCl}_{3}(10 \mathrm{~mL})$ solution of $\mathbf{6}$ (or 7) ($0.10 \mathrm{~g}, 0.1 \mathrm{mmol}$) and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}(0.033 \mathrm{~g}, 0.33$ mmol) was stirred at $25^{\circ} \mathrm{C}$ for 10 min before n-pentane $(20 \mathrm{~mL})$ was added to precipitate light yellow microcrystals which were collected by filtration, washed with n-pentane ($3 \times 10 \mathrm{~mL}$) and dried under vacuum. The yield was 0.11 g and 98% based on $\operatorname{Ir}\left(-\mathrm{C}(=\mathrm{CHPh}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right)(-\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{8 a})$.
$\operatorname{Ir}\left(-\mathrm{C}(=\mathrm{CHPh}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right)\left(-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{8 a})$. ${ }^{1} \mathrm{H} \quad$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta \quad 7.26-7.94(\mathrm{~m}$, $\left.\mathrm{P}\left(\mathrm{C}_{6} H_{5}\right)_{3}, \quad 30 \mathrm{H}\right), \quad 6.40-7.20 \quad\left(\mathrm{~m}, \quad \mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}_{6} H_{5}\right.$, $15 \mathrm{H}), 4.98\left(\mathrm{br} \mathrm{s}, \quad \operatorname{Ir}-\mathrm{C}(=\mathrm{CHPh}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), 1.44(\mathrm{~s}$, $\left.\left.\mathrm{Ir}-\mathrm{C}(=C \mathrm{HPh}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 181.1\left(\mathrm{~s}, \quad \mathrm{Ir}-\mathrm{C}(=C \mathrm{HPh}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), 172.3(\mathrm{t}$, $\left.J(\mathrm{CP})=10.4 \mathrm{~Hz}, \quad \operatorname{Ir}-\mathrm{C}(=C \mathrm{HPh}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), 137.7$ and $130.0\left(\mathrm{C}_{\text {ipso }}\right.$ carbons of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 131.2,131.1,129.9$, $129.8,128.5,127.4,126.3,124.6,124.2$, and 124.0 (CH carbons of $\left.\quad \mathrm{C}_{6} \mathrm{H}_{5}\right), \quad 121.4 \quad(\mathrm{t}, \quad J(\mathrm{CP})=3.1 \mathrm{~Hz}$, $\left.\operatorname{Ir}-\mathrm{C}(=C \mathrm{HPh}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), 114.8(\mathrm{t}, J(\mathrm{CP})=1.9 \mathrm{~Hz})$ and
$100.8 \quad(\mathrm{t}, \quad J(\mathrm{CP})=2.5 \mathrm{~Hz})(\mathrm{Ir}-\mathrm{C} \equiv \mathrm{CPh}), 98.5 \quad(\mathrm{t}$, $J(\mathrm{CP})=14.6 \mathrm{~Hz})$ and $68.8(\mathrm{t}, J(\mathrm{CP})=14.2 \mathrm{~Hz})(\mathrm{Ir}-$ $C \equiv \mathrm{CPh}), \quad 16.9$ (s, $\left.\operatorname{Ir}-\mathrm{C}(=\mathrm{CHPh}) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right)$, 135.3, 130.5, 130.2 and $127.6\left(\mathrm{P}\left(C_{6} \mathrm{H}_{5}\right)\right)$. HETCOR $\left({ }^{1} \mathrm{H}(500\right.$ $\left.\mathrm{MHz}) \rightarrow{ }^{13} \mathrm{C}(126 \mathrm{MHz})\right): \delta 1.44 \rightarrow 16.9 ; 4.98 \rightarrow 121.4$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 81 \mathrm{MHz}\right): \delta-0.79\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2127 and $2111\left(\mathrm{~s}, v_{\mathrm{C}=\mathrm{C}}\right), 1631(\mathrm{~s}$, $v_{\mathrm{C}=\mathrm{O}}$), 1604 ($\mathrm{s}, v_{\mathrm{C}=\mathrm{C}}$). Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{2} \mathrm{C}_{62} \mathrm{H}_{49}$: C, 68.94; H, 4.57. Found: C, 68.91; H, 4.54 .
$\operatorname{Ir}\left(-\mathrm{C}\left(=\mathrm{CH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right)(-\mathrm{C} \equiv \mathrm{C}-$ $\left.p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2} \quad(\mathbf{8 b}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \quad \delta \quad 7.26-7.95 \quad\left(\mathrm{~m}, \quad \mathrm{P}\left(\mathrm{C}_{6} H_{5}\right)_{3}, \quad 30 \mathrm{H}\right), \quad 6.29-$ 7.01 (m, Ir-C $\equiv \mathrm{C}-p-\mathrm{C}_{6} H_{4} \mathrm{CH}_{3}, 12 \mathrm{H}$), 4.97 (br s, Ir-C($\left.\left.=\mathrm{CH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), 2.35,2.31$ and 2.26 (s, Ir-C($\left.=\mathrm{CH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}$ and $\mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6}-$ $\left.\mathrm{H}_{4} \mathrm{CH}_{3}, 9 \mathrm{H}\right), 1.40\left(\mathrm{~s}\right.$, Ir-C $\left(=\mathrm{CH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 180.9$ (s, Ir-C $\left.\left(=\mathrm{CH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), \quad 171.1 \quad(\mathrm{t}, \quad J(\mathrm{CP})=$ $\left.10.7 \mathrm{~Hz}, \quad \operatorname{Ir}-\mathrm{C}\left(=\mathrm{CH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right)$, 131.0, $130.9,128.5,128.4,128.3$, and 128.1 (CH carbons of $p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 135.2, 135.1, 133.9, 133.6, 133.5 and $127.2\left(\mathrm{C}_{\text {ipso }}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 121.4(\mathrm{t}, J(\mathrm{CP})=2.5 \mathrm{~Hz}$, Ir-C $\left.\left(=\mathrm{CH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), 114.5$ (s) and 100.4 $(\mathrm{t}, J(\mathrm{CP})=2.3 \mathrm{~Hz})\left(\mathrm{Ir}-\mathrm{C} \equiv C-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 97.2(\mathrm{t}$, $J(\mathrm{CP})=14.6 \mathrm{~Hz})$ and $67.0(\mathrm{t}, J(\mathrm{CP})=14.1 \mathrm{~Hz})(\mathrm{Ir}-$ $C \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 21.44 and 21.40 (both s, Ir-C $\equiv \mathrm{C}$ -$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3} \quad$ and $\mathrm{Ir}-\mathrm{C}\left(=\mathrm{CH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}$, $16.8 \quad \operatorname{Ir}-\mathrm{C}\left(=\mathrm{CH}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}, 135.4,130.2$, 129.8, and $127.6\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)$. HETCOR $\left({ }^{1} \mathrm{H}(500\right.$ $\mathrm{MHz}) \rightarrow{ }^{13} \mathrm{C}(126 \mathrm{MHz})$): $\delta \quad 1.40 \rightarrow 16.8 ; 2.35$ and $2.31 \rightarrow 21.44 ; \quad 2.26 \rightarrow 21.40 ; \quad 4.97 \rightarrow 121.4 . \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 81 \mathrm{MHz}$): $\delta-1.00\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$. IR (KBr , cm^{-1}): 2123 and $2109\left(\mathrm{~s}, v_{\mathrm{C}=\mathrm{C}}\right), 1636\left(\mathrm{~s}, v_{\mathrm{C}=\mathrm{O}}\right), 1593$ (s, $v_{\mathrm{C}=\mathrm{C}}$). Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{2} \mathrm{C}_{65} \mathrm{H}_{55}: \mathrm{C}, 69.56 ; \mathrm{H}$, 4.94. Found: C, 69.51; H, 4.90.

3.2.6. Reactions of $\operatorname{Ir}\left(-\mathrm{CH}=\mathrm{CH}_{2}\right)_{2}\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)$ $\left(\mathrm{PPh}_{3}\right)_{2}$ (6) with two equivalent $R C \equiv$ CH: Formation of $\operatorname{Ir}(-C \equiv C R)_{2}\left(\eta^{2}-O_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\boldsymbol{9}, \mathrm{R}=\mathrm{Ph}(\boldsymbol{a})$, p-tolyl (b), cyclohex-1-enyl (c)) and ethylene ($\mathrm{CH}_{2}=\mathrm{CH}_{2}$)

These compounds were prepared by the same method as described below for 9 a. $\mathrm{A}_{\mathrm{CHCl}}^{3} \mathbf{(1 0 \mathrm { mL })}$ solution of $6(0.10 \mathrm{~g}, 0.1 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C} \equiv \mathrm{CH}(0.020 \mathrm{~g}, 0.20$ mmol) was stirred at $25^{\circ} \mathrm{C}$ for 10 min before n-pentane $(20 \mathrm{~mL})$ was added to precipitate light yellow microcrystals which were collected by filtration, washed with n-pentane ($3 \times 10 \mathrm{~mL}$) and dried under vacuum. The yield was 0.11 g and 98% based on $\operatorname{Ir}(-\mathrm{C} \equiv \mathrm{C}-$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(9 \mathrm{a})$.
$\operatorname{Ir}\left(-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{2}\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(9 \mathrm{a}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.18-7.77\left(\mathrm{~m}, \mathrm{P}\left(\mathrm{C}_{6} H_{5}\right)_{3}, 30 \mathrm{H}\right)$, 6.84-6.93 (m, metha- and para-protons of $\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$, 6 H), 6.14 (d, ortho-protons of $\mathrm{C} \equiv \mathrm{CC}_{6} H_{5}, 4 \mathrm{H}$), 0.62 (s, $\left.\operatorname{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 126 \mathrm{MHz}$): $\delta 188.1\left(\mathrm{~s}, \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right), 131.3,126.9$ and 124.2 (s,

CH carbons of $\mathrm{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}$), 128.8 (s, ipso-carbons of $\left.\operatorname{Ir}-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{5}\right), \quad 103.9 \quad(\mathrm{~s}, \quad \mathrm{Ir}-\mathrm{C} \equiv C), 60.8 \quad(\mathrm{t}, \quad J(\mathrm{C}-$ $\mathrm{P})=13.0 \mathrm{~Hz}, \quad \operatorname{Ir}-C \equiv \mathrm{C}), \quad 23.3 \quad\left(\mathrm{~s}, \quad \operatorname{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)$, 135.2, 130.2, 130.0 and $127.9\left(\mathrm{P}\left(C_{6} \mathrm{H}_{5}\right)_{3}\right)$. HETCOR $\left({ }^{1} \mathrm{H}(500 \mathrm{MHz}) \rightarrow{ }^{13} \mathrm{C}(126 \mathrm{MHz})\right): \delta \quad 6.91 \rightarrow 126.9$; $6.86 \rightarrow 124.2 ; \quad 6.14 \rightarrow 131.3 ; \quad 0.62 \rightarrow 23.3 . \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($81 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.43\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$. IR $(\mathrm{KBr}$, cm^{-1}): $2118.4(\mathrm{~s}, \mathrm{C} \equiv \mathrm{C})$. Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{2} \mathrm{C}_{54} \mathrm{H}_{43}$: C, 66.31; H, 4.43. Found: C, 66.25; H, 4.38.
$\operatorname{Ir}\left(-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{9 b}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.20-7.77\left(\mathrm{~m}, \mathrm{P}\left(\mathrm{C}_{6} H_{5}\right)_{3}\right.$, 30 H), 6.04-6.74 (AB quartet, $\mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, \Delta v /$ $\left.J=42.7, J\left(\mathrm{H}_{\mathrm{A}}-\mathrm{H}_{\mathrm{B}}\right)=8.0 \mathrm{~Hz}, 8 \mathrm{H}\right), 2.21\left(\mathrm{~s}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right.$, $6 \mathrm{H}), 0.62\left(\mathrm{~s}, \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $126 \mathrm{MHz}): \delta 188.0\left(\mathrm{~s}, \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right), 133.7$ and 129.5 (both s, $\mathrm{C}_{\text {ipso }}$ of $\mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-C_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 131.1 and 127.7 (both s, CH carbons of $\mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 103.6 ($\mathrm{s}, \mathrm{Ir}-\mathrm{C} \equiv C-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), $58.9(\mathrm{t}, ~ J(\mathrm{C}-\mathrm{P})=10.1$ $\left.\mathrm{Hz}, \quad \mathrm{Ir}-C \equiv \mathrm{C}-p-C_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 23.3$ (s, $\mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}$), 21.0 (s, $\mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 135.2, 130.1, 129.1 and 127.8. $\left(\mathrm{P}\left(C_{6} \mathrm{H}_{5}\right)_{3}\right)$. HETCOR $\left({ }^{1} \mathrm{H}(500 \mathrm{MHz}) \rightarrow{ }^{13} \mathrm{C}\right.$ $(126 \mathrm{MHz})): \delta 6.73 \rightarrow 127.7 ; 6.05 \rightarrow 131.1 ; 2.21 \rightarrow 21.0$; $0.62 \rightarrow 23.3 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(81 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.43$ $\left(\mathrm{s}, \mathrm{PPh}_{3}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2119.8\left(\mathrm{~s}, v_{\mathrm{C} \equiv \mathrm{C}}\right)$. Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{2} \mathrm{C}_{56} \mathrm{H}_{47}$: C, 66.85; H, 4.71. Found: C, 66.88; H, 4.76.
$\operatorname{Ir}\left(-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}\right)\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\left(\mathrm{PPh}_{3}\right)_{2} \quad\right.$ (9c). ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \delta$ 7.11-7.86 (m, $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, 30 \mathrm{H}\right), 4.56\left(\mathrm{~s}, \mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}, 2 \mathrm{H}\right)$, $0.54 \quad\left(\mathrm{~s}, \quad \mathrm{Ir}-\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}, \quad 3 \mathrm{H}\right) \quad 1.14-1.90 \quad(\mathrm{~m}$, Ir-C $\left.\equiv \mathrm{C}-\mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C} \mathrm{H}_{2}, \quad 16 \mathrm{H}\right) . \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR (81 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.82\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$. Anal. Calc. for $\mathrm{Ir}_{1^{-}}$ $\mathrm{P}_{2} \mathrm{O}_{2} \mathrm{C}_{54} \mathrm{H}_{51}: \mathrm{C}, 65.77 ; \mathrm{H}, 5.21$. Found: C, $65.79 ; \mathrm{H}$, 5.28.
3.2.7. Reactions of $\operatorname{Ir}(-C \equiv \mathrm{Cp}-\text { tolyl })_{2}\left(\eta^{2}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)$ $\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{9 b})$ with $\mathrm{HC} \equiv \mathrm{CH}$: formation of $\operatorname{Ir}\left(\mathrm{O}=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-\mathrm{C}=\mathrm{CH}_{2}\right)(-\mathrm{C} \equiv \mathrm{C} \text { - } \text { - } \text {-tolyl })_{2}\left(\mathrm{PPh}_{3}\right)_{2}(\boldsymbol{8 c})$

A $0.1 \mathrm{~g}(0.1 \mathrm{mmol})$ of $\mathbf{9 b}$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was stirred under $\mathrm{HC} \equiv \mathrm{CH}(1 \mathrm{~atm})$ at $25^{\circ} \mathrm{C}$. Within 30 min , beige micro-crystals were precipitated and were collected by filtration, washed with n-pentane $(3 \times 10 \mathrm{~mL})$ and dried under vacuum. The yield was 0.11 g and 98% based on $\operatorname{Ir}\left(\mathrm{C}\left(=\mathrm{CH}_{2}\right)-\mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right)\left(-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2}-$ $\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{8 c}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.30-8.10$ $\left(\mathrm{m}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, 30 \mathrm{H}\right), 6.26-6.92\left(\mathrm{~m}, \mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right.$, $8 \mathrm{H}), 5.02(\mathrm{~d}, \quad J(\mathrm{HH})=1.5 \mathrm{~Hz})$ and $4.18(\mathrm{~d}$, $J(\mathrm{HH})=1.5 \mathrm{~Hz})\left(\mathrm{Ir}-\mathrm{C}\left(=\mathrm{CH}_{2}\right)-\mathrm{O}-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{O}, 2 \mathrm{H}\right), 2.29$ and $\quad 2.24 \quad\left(\mathrm{~s}, \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}, \quad 6 \mathrm{H}\right), \quad 1.15 \quad$ (s, $\left.\operatorname{Ir}-\mathrm{C}\left(=\mathrm{CH}_{2}\right)-\mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126\right.$ $\mathrm{MHz}): \quad \delta \quad 180.1 \quad\left(\mathrm{~s}, \quad \operatorname{Ir}-\mathrm{C}\left(=\mathrm{CH}_{2}\right)-\mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), \quad 175.0$ $\left(\mathrm{t}, \quad J(\mathrm{CP})=10.6 \mathrm{~Hz}, \quad \operatorname{Ir}-C\left(=\mathrm{CH}_{2}\right)-\mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), \quad 113.0$ and $101.4 \quad\left(\mathrm{~s}, \quad \mathrm{Ir}-\mathrm{C} \equiv C-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, $107.7 \quad(\mathrm{~s}$, $\left.\operatorname{Ir}-\mathrm{C}\left(=\mathrm{CH}_{2}\right)-\mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), \quad 96.1 \quad(\mathrm{t}, \quad J(\mathrm{CP})=15.0 \mathrm{~Hz})$ and $65.2 \quad(\mathrm{t}, \quad J(\mathrm{CP})=14.3 \mathrm{~Hz}) \quad\left(\mathrm{Ir}-C \equiv \mathrm{C}-p-C_{6} \mathrm{H}_{4}{ }^{-}\right.$ $\left.\mathrm{CH}_{3}\right), \quad 20.9 \quad\left(\mathrm{~s}, \quad \mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)$, $15.7 \quad(\mathrm{~s}$,

Ir-C $\left.\left(=\mathrm{CH}_{2}\right)-\mathrm{OC}\left(\mathrm{CH}_{3}\right)=\mathrm{O}\right), 130.4,130.3,127.9$ and 127.6 (s, CH carbons of $\operatorname{Ir}-\mathrm{C} \equiv \mathrm{C}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 133.0, 132.9.5, 131.9 and 131.8 (s, $\mathrm{C}_{\text {ipso }}$ of $\mathrm{Ir}-\mathrm{C} \equiv \mathrm{C}-p-$ $\left.C_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 134.8,130.3,129.3$ and 127.1. $\left(\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(81 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-3.33\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2122.3$ and $2107.8\left(\mathrm{~s}, v_{\mathrm{C}} \equiv \mathrm{C}\right)$. Anal. Calc. for $\mathrm{Ir}_{1} \mathrm{P}_{2} \mathrm{O}_{2} \mathrm{C}_{58} \mathrm{H}_{49}$: C, 67.49; H, 4.78. Found: C, 67.47; H, 4.79.

3.3. X-ray structure determination of $\operatorname{Ir}\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{3}\right)$ -$\left(-\mathrm{CC}-\mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)\left(\eta^{2}-\mathrm{O}_{2} \mathrm{C}-\mathrm{p}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(4 f)$

Crystals of $\mathbf{4 f}$ were grown by slow evaporation from CHCl_{3} solution. Preliminary examination and data collection were performed using a Bruker SMART CCD Detector single crystal X-Ray diffractometer using a graphite monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$) source equipped with a sealed tube X-ray source at $-100{ }^{\circ} \mathrm{C}$ for $\mathbf{4 f}$. Preliminary unit cell

Table 1
Details of crystallographic data collection for $\mathbf{4 f}$

	4 f
Chemical formula	$\mathrm{C}_{55} \mathrm{H}_{47} \mathrm{IrO}_{3} \mathrm{P}_{2}$
Chemical formula weight	1010.14
Temperature (K)	173(2)
Crystal dimension (mm)	$0.30 \times 0.28 \times 0.10$
Crystal system	Triclinic
Space group	$P \overline{1}$
Color of crystal	Yellow
Unit cell dimensions	
$a(\mathrm{~A})$	9.9059(7)
b (\AA)	11.9810(9)
$c(\AA)$	20.9544(16)
$\alpha\left({ }^{\circ}\right)$	94.4990(10)
$\beta\left({ }^{\circ}\right)$	90.6670(10)
$\gamma\left({ }^{\circ}\right)$	98.2910(10)
$V\left(\AA^{3}\right)$	2452.7(3)
Z	2
$\rho_{\text {(calc) }}\left(\mathrm{g} \mathrm{cm}^{-1}\right)$	1.529
$\mu\left(\mathrm{mm}^{-1}\right)$	2.995
$F(000)$	1132
Radiation	Mo K α
Wavelength	0.71069
θ Range (${ }^{\circ}$)	1.72-28.28
$h k l$ Range	$-11 \leqslant h \leqslant 13$
	$-15 \leqslant k \leqslant 7$
	$-26 \leqslant l \leqslant 27$
No. of reflections	15301
No. of unique data	11015
No. of observed ($\left\|F_{\mathrm{o}}\right\|>\sigma F_{\mathrm{o}}$) data	9861
No. of parameters	589
Scan type	π and ω scan
R_{1}	0.0355
$w R_{2}$	0.0759
Goodness-of-fit	1.048

$R_{1}=\left[\sum\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|| | F_{\mathrm{o}} \mid\right], w R_{2}=\left[\sum w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \sum w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{0.5}$.
weighting_scheme
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0388 P)^{2}+1.8667 P\right]$, where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$.
constants were determined with a set of 45 narrow frames (0.3 in ω) scans. A data set collected consists of 1286 frames of intensity data collected with a frame width of 0.3 in ω and counting time of $10 \mathrm{~s} /$ frame at a crystal to detector distance of 5.0 cm . The double pass method of scanning was used to exclude any noise. The collected frames were integrated using an orientation matrix determined from the narrow frame scans. smart and saint software packages (Bruker Analytical X-ray, Madison, WI, 1997) were used for data collection and data integration. Analysis of the integrated data did not show any decay. Final cell constants were determined by a global refinement of 5225 reflections ($2.3<\theta<28.2$). Collected data were corrected for absorbance using sadabs based upon the Laue symmetry using equivalent reflections. Crystal data and intensity data collection parameters are listed in Table 1. Structure solution and refinement of the structure were carried out using the shelxtl-plus (5.03) software package (Sheldrick, G.M., Siemens Analytical X-Ray Division, Madison, WI, 1997). The structure was solved by direct method and refined successfully in the space group P-1. Full-matrix least-squares refinement was carried out by minimizing $\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$. The non-hydrogen atoms were refined anisotropically and the hydrogen atoms were treated using appropriate riding model. Details of crystallographic data collection are listed in Table 1 . Bond distances and angles, positional and thermal parameters, and anisotropic thermal parameters have been included in the tables of Supplementary material.

Acknowledgements

The authors thank the Korea Research Foundation (KRF) for their financial support of this study through the Basic Science Research Institute program (Grant No. KRF-2003-015-C00332).

Appendix A. Supplementary material

Crystallopraphic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Center, CCDC No. 237800. Copies of this information can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallograhpic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk) and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HETCOR (${ }^{1} \mathrm{H}^{-13} \mathrm{C}$) spectra data of complexes 4f, 6, 7, 8a, 8c and 9a have been provided as PDF file. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem. 2004.11.040.

References

[1] (a) M.L. Waters, M.E. Bos, W.D. Wulff, J. Am. Chem. Soc. 121 (1999) 6403;
(b) Y. Ishii, K. Miyashita, K. Kamita, M. Hidai, J. Am. Chem. Soc. 119 (1997) 6448;
(c) T. Shibata, K. Yamashita, H. Ishida, K. Takagi, Org. Lett. 3 (2001) 1217;
(d) T. Ohmura, S. Yorozuya, Y. Yamamoto, N. Miyaura, Organometallics 19 (2000) 365;
(e) C. Slugovc, K. Mereiter, E. Zobetz, R. Schmid, K. Kirchner, Organometallics 15 (1996) 5275;
(f) Y. Kishimoto, P. Eckerle, T. Miyatake, M. Kainosho, A. Ono, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 121 (1999) 12035;
(g) T. Yasukawa, T. Satoh, M. Miura, M. Nomura, J. Am. Chem. Soc. 124 (2002) 12680;
(h) T. Takahashi, F.-Y. Tsai, M. Kotora, J. Am. Chem. Soc. 122 (2000) 4994;
(i) T. Ohmura, Y. Yamamoto, N. Miyaura, J. Am. Chem. Soc. 122 (2000) 4990;
(j) M. Picquet, C. Bruneau, P.H. Dixneuf, Chem. Commun. (1998) 2249.
[2] (a) D. Amoroso, G.P.A. Yap, D.E. Fogg, Organometallics 21 (2002) 3335;
(b) S.M. Hansen, M.A.O. Volland, F. Rominger, F. Eisenträger, P. Hofmann, Angew. Chem., Int. Ed. 38 (1999) 1273;
(c) M.A. Esteruelas, F.J. Lahoz, E. Oñate, L.A. Oro, C. Valero, B. Zeier, J. Am. Chem. Soc. 117 (1995) 7935;
(d) M. Saoud, A. Romerosa, M. Peruzzini, Organometallics 19 (2000) 4005;
(e) D. Touchard, P. Haquette, S. Guesmi, L.L. Pichon, A. Daridor,
L. Toupet, P.H. Dixneuf, Organometallics 16 (1997) 3640;
(f) C. Bianchini, P. Innocenti, M. Peruzzini, A. Romerosa, F. Zanobini, Organometallics 15 (1996) 272;
(g) I. Kovacik, M. Laubender, H. Werner, Organometallics 16 (1997) 5607;
(h) M.I. Bruce, Chem. Rev. 91 (1991) 197.
[3] (a) C.S. Chin, H. Lee, S. Noh, H. Park, M. Kim, Organometallics 22 (2003) 2119;
(b) C.S. Chin, M. Kim, H. Lee, Organometallics 21 (2002) 1679;
(c) C.S. Chin, H. Cho, G. Won, M. Oh, K.M. Ok, Organometallics 18 (1999) 4810;
(d) C.S. Chin, H. Lee, H. Park, M. Kim, Organometallics 21 (2002) 3889;
(e) C.S. Chin, M. Kim, H. Lee, S. Noh, K.M. Ok, Organometallics 21 (2002) 4785;
(f) C.S. Chin, G. Won, D. Chong, M. Kim, H. Lee, Acc. Chem. Res. 35 (2002) 218;
(g) C.S. Chin, M. Kim, G. Won, H. Chong, H. Lee, Dalton Trans. (2003) 2325;
(h) C.S. Chin, W. Maeng, D. Chong, G. Won, B. Lee, Y.J. Park, J.M. Shin, Organometallics 18 (1999) 2210.
[4] C.S. Chin, M. Kim, M.K. Lee, H. Lee, Organometallics 22 (2003) 3239.
[5] cis-Bis (alkynyl) iridium complexes $\operatorname{Ir}(\mathrm{C} \equiv \mathrm{CR})_{2}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (5) have been also synthesized by other method in our laboratory (see [3c]).
[6] Unpublished results. $\left[\left(\mathrm{OH}_{2}\right)\left(\mathrm{OClO}_{3}\right) \operatorname{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$was previously reported C.S. Chin, M. Lee, M. Oh, G. Won, Y.J. Park, M. Kim. Organometallics 19 (2000) 1572, and $\left[\left(\mathrm{OH}_{2}\right)(\mathrm{OT}-\right.$ f) $\left.\operatorname{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$is readily prepared by replacing OClO_{3}^{-} with OTf^{-}.
[7] (a) M.S. Sanford, M.R. Valdez, R.H. Grubbs, Organometallics 20 (2001) 5455;
(b) M.A. Esteruelas, F.J. Lahoz, A.M. López, E. Oñate, L.A. Oro, Organometallics 13 (1994) 1669;
(c) T. Daniel, N. Mahr, T. Braun, H. Werner, Organometallics 12 (1993) 1475.
[8] (a) I. Ara, J.R. Berenguer, E. Eguizábal, J. Forniés, E. Lalinde, F. Martínez, Organometallics 18 (1999) 4344;
(b) I. Ara, J.R. Berenguer, E. Eguizábal, J. Forniés, E. Lalinde, A. Martín, F. Martínez, Organometallics 17 (1998) 4578;
(c) F.J. Fernández, M. Alfonso, H.W. Schmalle, H. Berke, Organometallics 20 (2001) 3122.
[9] C.S. Chin, Y. Park, J. Kim, B. Lee, J. Chem. Soc. Chem. Commun. (1995) 1495.

[^0]: * Corresponding authors. Tel.: +82 2705 8448; fax: +82 27010967 (C.S. Chin), Tel.: +82 27145915 (H. Lee).

 E-mail addresses: cschin@sogang.ac.kr (C.S. Chin), hleegood@ sogang.ac.kr (H. Lee).

